

The methodology for performance
evaluation of open-source solutions
and IRONBYTE proprietary software

solutions

Table of Contents

1. Introduction.. 2

1.1 Purpose of Testing .. 2
1.2 Technical Equipment vs. Infrastructure ... 2
1.3 Operating Environment .. 2
1.4 Description of the Models Used .. 3
1.5 Description of Standard Tasks .. 3
1.6 Training Methods .. 3
2.1 Testing Phases .. 4

2. Procedure for Conducting Test Trials .. 5

2.1 First Phase (Open-source) .. 5
2.2 Second Phase of Testing (IRONBYTE Proprietary Software Solutions) .. 13

3. Test protocol .. 19

3.1. Conclusions .. 19

3.2. Appendices ... 22

 2

1. Introduction

This document outlines the methodology for conducting test trials and describes the

procedure for evaluating the effectiveness of IRONBYTE proprietary software solutions in

comparison with open-source solutions.

1.1 Purpose of Testing

The purpose of the testing is to:

• Perform standard computational tasks in the field of LLM using IRONBYTE

proprietary software solutions and open-source solutions.

1.2 Technical Equipment vs. Infrastructure

Technical Equipment:

• Rig Nvidia H100 – a node with 8 Nvidia H100 GPUs (80GB), hereinafter referred to

as the node;

• Rig Nvidia H100 *2 – a cluster of 2 nodes (Rig0, Rig1) with 8 Nvidia H100 GPUs

(80GB) on each node, hereinafter referred to as the cluster.

Network parameters:

• A 10 Gbit/s network providing communication between the nodes;

• An 80 Gbit/s network providing communication between the nodes for open source
(2 nodes).

1.3 Operating Environment

Each node is prepared for autonomous application execution (all necessary

libraries, drivers, and services are pre-installed).

Software composition:

1. OS AlmaLinux 9.5;

 3

2. NVIDIA drivers, version 550 or higher;

3. CUDA libraries, version 12.2 or higher;

4. Container service (Docker);

5. A set of containers containing necessary ML libraries and frameworks

(python/torch/numpy/etc);

6. Pre-loaded models and datasets.

Source data for running ML tasks (pre-installed):

1. Orchestrator for distributed training using IRONBYTE proprietary software solutions;

2. Containers with IRONBYTE proprietary software solutions;

3. Containers with open-source solutions.

1.4 Description of the Models Used

The following large language models were used for the tests:

1. Llama-2-70b-chat-hf (quantized to 4-bit), hereinafter referred to as Llama2-70B;

2. Llama-2-7b-chat-hf (original size), hereinafter referred to as Llama2-7B.

1.5 Description of Standard Tasks

The following three standard tasks were chosen for testing the computational nodes:

1. Pretraining of the model on the fineweb-edu dataset;

2. Finetuning of the model on the databricks-dolly-15k dataset.

3. Model inference loading and text generation.

1.6 Training Methods

1.6.1 Training Using open-source Solutions:

1. Model distribution across all GPUs (balanced mode);

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/databricks/databricks-dolly-15k

 4

2. FullyShardedDataParallel (FSDP) mode for data and model parameter segmentation.

In accelerator mode (experimentally), it supports operation across multiple nodes. This

solution is applicable exclusively to LLM models built on PyTorch and published on the

Hugging Face platform. This mode requires high network communication speeds.

1.6.2 Training Using IRONBYTE Proprietary Software Solutions:

1. Model and dataset distribution across groups of GPUs and nodes, with results

mixed in the final computation stage (IRONBYTE share protocol). This protocol is

designed for networks with low speeds and high network latency. This solution has

no limitations and is applicable to any models.

2.1 Testing Phases

The testing is conducted in two phases:

First Phase:

1. Performing standard computational tasks using open-source solutions on 1 node.

2. Performing standard computational tasks using open-source solutions on 2 nodes of

the cluster.

Second Phase:

1. Performing standard computational tasks using open-source solutions on 2 nodes of

the cluster;

2. Optionally: Performing standard computational tasks using IRONBYTE proprietary

software solutions on 1 node.

 5

2. Procedure for Conducting Test Trials

2.1 First Phase (Open-source)

2.1.1 Testing the Llama2-70B Model

2.1.1.1 Procedure for Starting the Pretraining Task of Llama2-70B on One Node

The task is run on one node. For pretraining, the LLAMA2-70B model is used, trained

on the fineweb-edu 10BT dataset for 1000 steps.

1. Command to Start the Container:

docker run -it --rm -v $HOME/pretrain70:/root -v /opt/dekubelocal:/share:ro -
-gpus all -w /root registry.cn-chengdu.aliyuncs.com/ai-palm/rrllm-
cu124:pretrain.004

2. Running the Command for Pretraining Without Creating an "Empty" Model1:

time python3 /wrk/run_clm_no_trainer.py --
dataset_name=/share/datasets/fineweb-edu/sample/10BTsingle/ --
config_name=/wrk/70BlankModel --max_train_steps=1000 --
output_dir=/root/result70b --
blank_model_name_or_path=/share/models/LLAMA2/metaAi/TMP70 --
use_quantization=Yes

The result of execution is:

1. A trained model of 1000 steps, saved in the directory $HOME/pretrain70s/result70b.

2. The recorded time spent on the pretraining task.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

1 "Empty" model — a model with randomly initialized weights. It can be created by specifying the

following key: --create_model_from_config=True.

 6

2.1.1.2 Procedure for Starting the Pretraining Task of Llama2-70B in FSDP Mode

on the Cluster

The task is run on two nodes of the cluster. For pretraining, the LLAMA2-70B model

is used, trained on the fineweb-edu 10BT dataset for 100 2 steps.

1. Preparation Steps (Optional), Cloning the Launch Files.

Since the launch procedure is quite complex, the task is run using Docker Compose.

It is necessary to clone the files onto each node, and in the Compose file, specify the

correct node names and their IP addresses.

GIT_SSL_NO_VERIFY=true git clone https://gitlab.clive.tk/clients/job-
manifests-public

2. Command to Start the Container in Interactive3 Mode on Node rig0:

Cd Llama2-70B-fsdp-twonode

docker compose -f interactive-compose-a.yaml up &

docker exec -it llama2a

3. Command to Start the Container on Node rig1:

Cd Llama2-70B-fsdp-twonode

docker compose -f interactive-compose-b.yaml up &

docker exec -it llama2b

4. Running the Command for Pretraining on Two Nodes:

/mnt/wrk/entrypoint.sh

The result of execution is:

1. A trained model of 100 steps, saved in the directory

$HOME/pretrain70/result70b-fsdp.

2 The choice of a small number of training steps is due to the fact that the network connectivity of

the nodes at 10 Gbit/s is insufficient to ensure the intensive transfer of the computed
backpropagated gradient during each iteration of the error function calculation. One step in this
configuration takes 375 seconds to complete.

3 To disable interactive mode, you need to remove the -f key from the parameter.

 7

2. The recorded time spent on the pretraining task.

To monitor the utilization of computational resources, the nvtop, bmon utility is

used, if necessary.

2.1.1.3 Procedure for Starting the Finetuning Task of Llama2-70B

The task is run on one node. For the finetuning task, the Llama2-70B model is used,

finetuned on the databricks-dolly dataset for 500 steps.

1. Command to Start the Container:

docker run -it --rm -v $HOME/finetune70:/root -v /opt/dekubelocal:/share:ro -
-gpus all --pull=always registry.cn-chengdu.aliyuncs.com/ai-palm/rrllm-
cu122:finetune

2. Command to start the finetuning task:4

time python3 /wrk/ft_70full_n_h100_1ep.py --
model_dir=/share/models/LLAMA2/metaAi/Llama-2-70b-chat-hf --
output_dir=/root/full --num_step=500 --
dataset_pth=/share/datasets/databricks/databricks-dolly-15k.jsonl

The result of execution is:

1. A finetuned model of 500 steps, saved in the directory $HOME/finetune70/full/.

2. The recorded time spent on the finetuning task.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.1.1.4 Procedure for Starting the Finetuning Task of Llama2-70B in FSDP Mode

on the Cluster

The task is run on two nodes of the cluster. For the finetuning task, the Llama2-70B

model is used, finetuned on the databricks-dolly dataset for 100 steps.

1. Preparation steps (optional), cloning the launch files.

4 To specify the training time in epochs, you need to use the --num_epoch key

 8

Since the launch procedure is quite complex, the task is run using Docker Compose.

It is necessary to clone the files onto each node, and in the Compose file, specify the

correct node names and their IP addresses.

GIT_SSL_NO_VERIFY=true git clone https://gitlab.clive.tk/clients/job-manifests-

public

2. Command to start the container in interactive5 mode on node rig0:

Cd Llama2-70B-fsdp-twonode-ft

docker compose -f interactive-compose-a.yaml up &

docker exec -it llama2a

3. Command to start the container on node rig1:

Cd Llama2-70B-fsdp-twonode-ft

docker compose -f interactive-compose-b.yaml up &

docker exec -it llama2b

4. Command to start the finetuning task на двух узлах кластера:

/mnt/wrk/entrypoint.sh

The result of execution is:

1. A finetuned model of 100 steps, saved in the directory $HOME/finetune70/result70b-

fsdp.

2. The recorded time spent on the finetuning task.

To monitor the utilization of computational resources, the nvtop, bmon utility is used,

if necessary.

2.1.1.5 Procedure for Starting the Inference Task of Llama2-70B on One Node

The task is run on one node. For the inference task, the Llama2-70B model is used,

which generates a specified number of tokens in response to a fixed question.

5 To disable interactive mode, you need to remove the -f key from the parameter.

 9

Task execution parameters:

• Fixed question: Can there be life somewhere in the Solar System outside Earth?

• Number of question repetitions: 30;

• Number of tokens in each response: от 100 до 400 tokens (variable value);

• Total number of generated tokens: 7750.

Metrics:

• The total time spent generating all tokens is calculated.

• The generation speed of one token is determined.

• The number of tokens generated per second is computed.

Execution procedure:

1. Command to start the container:

docker run -ti --rm -v /opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-70b-
chat-hf:/model -v wrk -e MODEL_DIR='/model' --gpus all registry.cn-
chengdu.aliyuncs.com /ai-palm/env:torch24cu124.002

2. Command to start the inference task:

export
MAX_TOKENS_LST='100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,2
50,260,270,280,290,300,310,320,330,340,350,360,370,380,390,400' QUESTION='Can
there be life somewhere in the Solar System outside Earth?'

python3 in_fer.py

The result of execution is:

1. The time taken to generate a response for each query.

2. The time taken to generate responses depending on their length.

3. The average time taken to generate one token.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

 10

2.1.2 Testing the Llama2-7B Model

2.1.2.1 Procedure for Starting the Pretrain Task of Llama2-7B

The task is run on one node. For the pretraining task, the Llama2-7B model (without

quantization) is used, trained on the fineweb-edu 10BT dataset for 1000 steps.

1. Command to Start the Container:

docker run -it --rm -v $HOME/pretrain:/root -v /opt/dekubelocal:/share:ro --
gpus all -w /root registry.cn-chengdu.aliyuncs.com/ai-palm/rrllm-
cu124:pretrain.004

2. Command to start pretraining without creating an "empty" model:

time python3 /wrk/run_clm_no_trainer.py --
dataset_name=/share/datasets/fineweb-edu/sample/10BTsingle/ --
config_name=/wrk/7BlankModel --max_train_steps=1000 --
output_dir=/root/result7b --
blank_model_name_or_path=/share/models/LLAMA2/metaAi/TMP7

The result of execution is

1. A trained model of 1000 steps, saved in the directory $HOME/pretrain/result7b/.

2. The recorded time spent on the pretraining task.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.1.2.2 Procedure for Starting the Pretraining Task of Llama2-7B in FSDP Mode

on the Cluster

The task is run on two nodes of the cluster. For pretraining, the Llama2-70B model is

used, trained on the fineweb-edu 10BT dataset for 100 steps.

1. Preparation Steps (Optional), Cloning the Launch Files.

Since the launch procedure is quite complex, the task is run using Docker Compose.

It is necessary to clone the files onto each node, and in the Compose file, specify the

correct node names and their IP addresses.

GIT_SSL_NO_VERIFY=true git clone https://gitlab.clive.tk/clients/job-
manifests-public

 11

2. Command to start the container in interactive6 mode on node rig0:

Cd llama2-7b-fsdp-twonode

docker compose -f interactive-compose-a.yaml up &

docker exec -it llama2a

3. Command to start the container on node rig1:

Cd llama2-7b-fsdp-twonode

docker compose -f interactive-compose-b.yaml up &

docker exec -it llama2b

4. Command to start pretraining on two nodes of the cluster:

/mnt/wrk/entrypoint.sh

The result of execution is:

1. A trained model of 100 steps, saved in the directory $HOME/pretrain7/result7b-fsdp.

2. The recorded time spent on the pretraining task.

To monitor the utilization of computational resources, the nvtop, bmon utility is used,

if necessary.

2.1.2.3 Procedure for Starting the Finetuning Task of Llama2-7B

The task is run on one node. For the finetuning task, the Llama2-7B model (without

quantization) is used, which is finetuned on the databricks-dolly dataset for 1 epoch.

1. Command to Start the Container:

docker run --rm -it --name finetune7 --gpus all -v /opt/dekubelocal:/share:ro
-v $HOME/finetune:/root registry.cn-chengdu.aliyuncs.com/ai-palm/rrllm-
cu122:finetune.001

2. Command to start the finetuning task:

time python3 ft_7full_many_gpu.py --
model_dir=/share/models/LLAMA2/metaAi/Llama-2-7b-chat-hf/ --num_epoch=1 --

6 To disable interactive mode, you need to remove the -f key from the parameter.

 12

dataset_pth=/share/datasets/databricks/databricks-dolly-15k.jsonl --
output_dir=/root/result7b

The result of execution is:

1. The finetuned model of 1 epoch, saved in the directory $HOME/finetune/result7b.

2. The recorded time spent on the finetuning task.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.1.2.4 Procedure for Starting the Inference Task of Llama2-7B

The task is run on one node. For the inference task, the Llama2-7B model is used,

which generates a specified number of tokens in response to a fixed question.

Task execution parameters:

• Fixed question: Can there be life somewhere in the Solar System outside

Earth?

• Number of question repetitions: 30;

• Number of tokens in each response: from 100 to 400 tokens (variable value);

• Total number of generated tokens: 7750.

Metrics:

• The total time spent generating all tokens is calculated.

• The generation speed of one token is determined.

• The number of tokens generated per second is computed.

Execution procedure:

1. Command to Start the Container:

docker run -ti --rm -v /opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-7b-chat-
hf:/model -v wrk -e MODEL_DIR='/model' --gpus all registry.cn-
chengdu.aliyuncs.com /ai-palm/env:torch24cu124.002

2. Command to start the inference task:

 13

export
MAX_TOKENS_LST='100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,2
50,260,270,280,290,300,310,320,330,340,350,360,370,380,390,400' QUESTION='Can
there be life somewhere in the Solar System outside Earth?'

python3 in_fer.py

The result of execution is:

1. The time taken to generate a response for each query.

2. The time taken to generate responses depending on their length.

3. The average time taken to generate one token.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.2 Second Phase of Testing (IRONBYTE Proprietary Software

Solutions)

2.2.1 Testing the Llama2-70B Model

2.2.1.1 Procedure for Starting the Pretraining Task of Llama2-70B on the Cluster

The task is run on two nodes of the cluster. For the pretraining task, the Llama2-70B

model is used, trained on the fineweb-edu 10BT dataset for 1000 steps.

1. Command to Start the Orchestrator on One of the Nodes:

python ./orch.py --gpu_type H100 -n rig0.IRONBYTE:2x4 rig1.IRONBYTE:2x4 -t
pretrain --num_step 1000 -m rig0.IRONBYTE --dataset_pth
/opt/dekubelocal/datasets/fineweb-edu/sample/10BT/000_00000.parquet

2. *Optionally, the task can be run on a single computational node. To do this, simply

remove the second node from the launch parameters. For example:

python ./orch.py --gpu_type H100 -n rig0.IRONBYTE:2x4 -t pretrain --num_step
1000 -m rig0.IRONBYTE --dataset_pth /opt/dekubelocal/datasets/fineweb-
edu/sample/10BT/000_00000.parquet

 14

The result of execution is:

1. A trained model of 1000 steps, saved in the directory /opt/pyorch/{timestamp}/ on the

node where the task was launched.

2. The recorded time spent on executing the pretraining task using IRONBYTE

proprietary software solutions.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary, on all nodes.

2.2.1.2 Procedure for Starting the Finetuning Task of Llama2-70B

The task is run on two nodes of the cluster. For the finetuning task, the Llama2-70B

model is used, finetuned on the databricks-dolly dataset for 500 steps.

1. Command to start the orchestrator on one of the nodes:

python ./orch.py --gpu_type H100 -n rig0.IRONBYTE:2x4 rig1.IRONBYTE:2x4 -t
finetune --num_step 500 -m rig0.IRONBYTE

2. *Optionally, the task can be run on a single computational node. To do this, simply

remove the second node from the launch parameters. For example:

python ./orch.py --gpu_type H100 -n rig0.IRONBYTE:2x4 -t finetune --num_step
500 -m rig0.IRONBYTE

The result of execution is:

1. A finetuned model of 500 steps, saved in the directory /opt/pyorch/{timestamp}/ on

the node where the task was launched.

2. The recorded time spent on executing the finetuning task using IRONBYTE

proprietary software solutions.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

 15

2.2.1.3 Procedure for Starting the Inference Task of Llama2-70B

The task is run on two nodes of the cluster. For the inference task, the Llama2-70B

model is used, which generates a specified number of tokens in response to the fixed

question.

Task execution parameters:

• Fixed question: Can there be life somewhere in the Solar System outside Earth?

• Number of question repetitions: 30;

• Number of tokens in each response: от 100 до 400 tokens (variable value);

• Total number of generated tokens: 7750.

Execution procedure:

1. Command to start multi-inference on two nodes of the cluster:

./orch.py -t inference -n rig0.IRONBYTE:4x2 rig1.IRONBYTE:4x2 --model_dir
/opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-70b-chat-hf --max_tokens_from
100 --max_tokens_to 401 --question 'Can there be life somewhere in the Solar
System outside Earth?'

2. Command to start inference on one node (optional, for performance comparison

with the open-source solution in a single thread):

./orch.py -t inference -n rig0.IRONBYTE:1x8 --model_dir
/opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-70b-chat-hf --max_tokens_from
100 --max_tokens_to 401 --question 'Can there be life somewhere in the Solar
System outside Earth?'

The result of execution is:

1. The time taken to generate a response for each query.

2. The time taken to generate responses depending on their length.

3. The average time taken to generate one token.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

 16

2.2.2 Testing the Llama2-7B Model

2.2.2.1 Procedure for Starting the Pretraining Task of Llama2-7B on the Cluster

The task is run on two nodes of the cluster. For the pretraining task, the Llama2-7B

model is used, trained on the fineweb-edu 10BT dataset for 2000 steps.

1. Command to start the task orchestrator on two nodes of the cluster:

python ./orch.py --gpu_type h100 -n rig0.IRONBYTE:4x2 rig1.IRONBYTE:4x2 -t
pretrain --num_step 2000 -m rig0.IRONBYTE --dataset_pth
/opt/dekubelocal/datasets/databricks

2. *Optionally, the task can be run on a single computational node. To do this, simply

remove the second node from the launch parameters. For example:

python ./orch.py --gpu_type H100 -n rig0.IRONBYTE:4x2 -t pretrain --num_step
2000 -m rig0.IRONBYTE --dataset_pth /opt/dekubelocal/datasets/databricks

The result of execution is:

1. A finetuned model of 2000 steps, saved in the directory /opt/pyorch/{timestamp}/ on

the node where the task was launched.

2. The recorded time spent on executing the pretraining task using IRONBYTE

proprietary software solutions.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.2.2.2 Procedure for Starting the Finetuning Task of Llama2-7B on the Cluster

The task is run on two nodes of the cluster. For the finetuning task, the Llama2-7B

model is used, trained on the databricks-dolly dataset for 1 epoch.

1. Command to start the task orchestrator on two nodes of the cluster:

python ./orch.py --gpu_type h100 -n rig0.IRONBYTE:4x2 rig1.IRONBYTE:4x2 -t
finetune --num_epoch 1 -m rig0.IRONBYTE --num_epoch 1 --dataset_pth
/opt/dekubelocal/datasets/databricks

2. *Optionally, the task can be run on a single computational node. To do this, simply

remove the second node from the launch parameters. For example:

 17

python ./orch.py --gpu_type h100 -n rig0.IRONBYTE:4x2 -t finetune --num_epoch
1 -m rig0.IRONBYTE --num_epoch 1 --dataset_pth
/opt/dekubelocal/datasets/databricks

The result of execution is:

1. A finetuned model of 1 epoch, saved in the directory /opt/pyorch/{timestamp}/ on the

node where the task was launched.

2. The recorded time spent on executing the finetuning task using IRONBYTE

proprietary software solutions.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

2.2.2.3 Procedure for Starting the Inference Task of Llama2-7B

The task is run on two nodes of the cluster. For the inference task, the Llama2-7B

model is used, which generates a specified number of tokens in response to a fixed question.

Task execution parameters:

• Fixed question: Can there be life somewhere in the Solar System outside Earth?

• Number of question repetitions: 30;

• Number of tokens in each response: от 100 до 400 tokens (variable value);

• Total number of generated tokens: 7750.

Execution procedure:

1. Command to start multi-inference on two nodes of the cluster:

./orch.py -t inference -n rig0.IRONBYTE:5x2 rig1.IRONBYTE:5x2 --model_dir
/opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-7b-chat-hf --max_tokens_from
100 --max_tokens_to 401 --question 'Can there be life somewhere in the Solar
System outside Earth?'

2. Command to start inference on one node (optional, for performance comparison with

the open-source solution in a single thread):

./orch.py -t inference -n rig0.IRONBYTE:1x8 --model_dir
/opt/dekubelocal/models/LLAMA2/metaAi/Llama-2-7b-chat-hf --max_tokens_from
100 --max_tokens_to 401 --question 'Can there be life somewhere in the Solar
System outside Earth?'

 18

The result of execution is:

1. The time taken to generate a response for each query.

2. The time taken to generate responses depending on their length.

3. The average time taken to generate one token.

To monitor the utilization of computational resources, the nvtop utility is used, if

necessary.

3. Test protocol

3.1. Conclusions

As part of the conducted tests, we analyzed the results of Pretraining, Finetuning, and

Inference tasks for the Llama2-70B and Llama2-7B models using Open Source and

IRONBYTE methods. For each task type, execution time was determined, and efficiency was

calculated.

Based on the data presented in the tables, we computed speed ratio comparisons for

IRONBYTE and Open-source solutions across all task types.

1. Llama2-70B

Pretraining Task (1000 steps)

1 node:

• The IRONBYTE solution achieved a speed of 29 minutes, which is 321% more

efficient than the Open-source result of 93 minutes.

Cluster (2 nodes):

• The IRONBYTE solution achieved a speed of 20 minutes, which is 6,050% more

efficient than the Open-source result of 1,210 minutes, using two nodes in IB DG

Mode, 80G.

• The efficiency of the IRONBYTE solution was 290% compared to the Open-source

result of 58 minutes in IB Conn Mode (Result other Cloud).

Finetuning Task (500 steps)

1 node:

• The IRONBYTE solution achieved a speed of 68 minutes, which is 182% more

efficient than the Open-source result of 124 minutes.

Cluster (2 nodes):

 20

• The IRONBYTE solution achieved a speed of 39 minutes, which is 1,377% more

efficient than the Open-source result of 537 minutes, using two nodes in IB DG

Mode, 80G.

• The efficiency of the IRONBYTE solution was 190% compared to the Open-source

result of 74 minutes in IB Conn Mode (Result other Cloud).

Inference Task (Time to Generate 1 Token)

1 node:

• The IRONBYTE solution in multi-inference mode achieved a speed of 0.0139

seconds, which is 410% more efficient than the Open-source result of 0.057

seconds.

• In single-thread mode, the IRONBYTE solution achieved a speed of 0.054

seconds, which is 106% more efficient than the Open-source result of 0.057

seconds.

2. Llama2-7B:

Pretraining Task (2000 steps)

1 node:

• The IRONBYTE solution achieved a speed of 7 minutes, which is 1,714% more

efficient than the Open-source result of 120 minutes.

Cluster (2 nodes):

• The IRONBYTE solution achieved a speed of 5 minutes, which is 9,840% more

efficient than the Open-source result of 492 minutes, using two nodes in IB DG

Mode, 80G.

• The efficiency of the IRONBYTE solution is 1,440% compared to the Open-source

result of 72 minutes in IB Conn Mode (Result other Cloud).

Finetuning Task (1 epoch)

1 node:

 21

• The IRONBYTE solution achieved a speed of 28 minutes, which is 1,161% more

efficient than the Open-source result of 325 minutes.

Cluster (2 nodes):

• The IRONBYTE solution achieved a speed of 15 minutes, which is 25,000% more

efficient than the Open-source result of 3,750 minutes, using two nodes in IB DG

Mode, 80G.

• The efficiency of the IRONBYTE solution was 1,273% compared to the Open-

Source result of 191 minutes in IB Conn Mode (Result other Cloud).

Inference Task (Time to Generate 1 Token)

1 node:

• The IRONBYTE solution in multi-inference mode achieved a speed of 0.0019

seconds, which is 1,053% more efficient than the Open-source result of 0.02

seconds.

• In single-thread mode, the IRONBYTE solution achieved a speed of 0.0175

seconds, which is 114% more efficient than the Open-source result of 0.02

seconds.

The data presented above shows that the IRONBYTE solution efficiently leverages

the capabilities of H100 GPUs, significantly reducing task execution time and demonstrating

optimizations that ensure high performance.

Thus, the use of the IRONBYTE solution significantly improves performance across

all task types, making it a more advantageous choice for working with LLMs.

 22

3.2. Appendices

Table №1. Test Results for the Quantized Llama2-70B Model: Pretraining and Finetuning.

Task Type Parameters Open
source

IRONBYTE Open
source

Open
source

IRONBYTE

1 node 1 node 2 nodes (IB
DG Mode,
80G)

2 nodes
(IB Conn
Mode)

2 nodes

Pretraining
(min)

 Result other
Cloud

 1000 steps 93 29 1210* 58 20

 100 steps 10 7 110 6 Х

The efficiency coefficient of
Pretraining

 1000 steps 3.2 1 60.5* 2.9 1

 100 steps 1.4 1 - - -

Finetuning
(min)

 500 steps 124 68 537* 74 39

 100 steps 26 10 133 15 Х

The efficiency coefficient of
Finetuning

 500 steps 1.8 1 13.8* 1.9 1

 100 steps 2.6 1 - - -

 23

Table № 2. Inference testing results of the quantized Llama2-70B model.

Task Type Parameters Open
source

IRONBYTE Open
source

IRONBYTE

Inference

(sec)

 1 node 1 node Multi
Inference

(sec)

1, 2 nodes

1 node 2 nodes

 Total
Generation
Time (sec)

439 419 Total
Generation
Time (sec)

No
solution

107 54

 Time to
Generate 1
Token
(sec)

0.057 0.054 Time to
Generate 1
Token
(sec)

No
solution

0.0139 0,0079

 Token
Generation
per 1
Second

17.6 18.4 Token
Generation
per 1
Second

No
solution

71 131

The efficiency
coefficient of
Finetuning

The efficiency is calculated by comparing both the inference values and the
multi-inference values

 Total
Generation
Time (sec)

4.1 3.9 No
solution

1 -

 Time to
Generate 1
Token
(sec)

4.1 3.9 No
solution

1 -

 Token
Generation
per 1
Second

0.25 0.26 No
solution

1 -

 24

Table №3. Testing results on Pretraining and Finetuning tasks of the Llama2-7B Model (Without
Quantization).

Task Type Parameters Open
source

IRONBYTE Open
source

Open
source

IRONBYTE

1 node 1 node 2 nodes (IB
DG Mode,
80G)

2 nodes
(IB Conn
Mode)

2 nodes

Pretraining
(min)

 Result other
Cloud

 2000 steps 120 7 492* 72 5

 1000 steps 62 4 235* 36 X

 100 steps 6 X 22 4 X

The efficiency coefficient of
Pretraining

 2000 steps 17.14 1 98.4* 14.4 1

 1000 steps 15.5 1 - - -

 100 steps - - - - -

Finetuning
(min)

 Open
source

IRONBYTE Open
source

Open
source

IRONBYTE

 1 epoch 325 28 3750* 191 15

The efficiency coefficient of
Finetuning

 1 epoch 11.6 1 250 12.7 1

 25

Table №4. Inference testing results of the Llama2-7B model (Without Quantization).

Task
Type

Parameters Open
source

IRONBYTE Open
source

IRONBYTE

Inference

(sec)

 1 node 1 node Multi
Inference

(sec)

1, 2 nodes

1 node 2 nodes

 Total
Generation
Time (sec)

155 136 Total
Generation
Time (sec)

No

solution

15 7

 Time to
Generate 1
Token (sec)

0.02 0.0175 Time to
Generate 1
Token
(sec)

No

solution

0.0019 0.0009

 Token
Generation
per 1
Second

49 56 Token
Generation
per 1
Second

No

solution

515 1075

The efficiency
coefficient of
Finetuning

The efficiency is calculated by comparing both the inference values and the
multi-inference values

 Total
Generation
Time (sec)

10.33 9 No
solution

1 -

 Time to
Generate 1
Token
(sec)

10.5 9.21 No
solution

1 -

 Token
Generation
per 1
Second

0.095 0.1 No
solution

1 -

« * » – The values marked are those set through calculations, due to the inability to

reproduce such a long training process.

« X » – Values are not provided because for a small number of steps, the IRONBYTE

algorithm is not recommended due to the time it takes to transmit the results and perform

the result merging, which exceeds the time spent on the training procedure itself. The

transmission and result merging time does not depend on the number of steps (epochs)

specified.

 26

« - » – The efficiency ratio calculation has not been performed due to the lack of

results, see the note above.

«No solution» – The idea of multi-inference is not new, and there are many projects

on GitHub that announce the scaling of the output task and are at various stages of

development. However, these projects cannot be used as reference solutions, as they

primarily achieve faster inference by caching queries and balancing context during request

processing. In such solutions, isolating the "pure" time would take an unjustifiably long time.

Therefore, we suggested using the speed characteristics of the reference code from HF as

reference values.

IRONBYTE solutions represent a more low-level platform on top of which scalable

and manageable solutions can be built to meet customer requirements.

